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Decay of classical chaotic systems: The case of the Bunimovich stadium
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The escape of an ensemble of particles from the Bunimovich stadium via a small hole has been
studied numerically. The decay probability starts out exponentially but has an algebraic tail. The
weight of the algebraic decay tends to zero for vanishing hole size. This behavior is explained by the
slow transport of the particles close to the marginally stable bouncing ball orbits. It is contrasted
with the decay function of the corresponding quantum system.

PACS number(s): 05.45.+b

I. INTRODUCTION

The decay of a quantum mechanical system whose
states may be treated statistically is — on the average
over the states — not always exponential. It is alge-
braic, if only a few decay channels are open. This has
been demonstrated in [1]. There, the quantum mechani-
cal system was simulated experimentally by a quasi-two-
dimensional microwave cavity. The classical analog to
this is the motion of a particle in a billiard shaped like a
stadium, which was shown by Bunimovich [2] to be fully
chaotic and especially ergodic. By the present paper, we
want to show that the algebraic decay observed in [1] is a
quantum mechanical feature that has no classical coun-
terpart. To this end we have studied the escape probabil-
ity P(t) via a small hole out of the classical Bunimovich
stadium and find P(t) “almost exponential.” This means
that every P(t) has an algebraic tail for large t, but the
decay functions approach exponential behavior with de-
creasing size of the hole.

The algebraic asymptotics of the decay function P(t)
can be viewed as an example of the “third type of decay”
mentioned in the introduction of [3], where “particles ini-
tialized in a chaotic region can stick a long time to the
vicinity of the boundary of a regular region.” Although
there is no region of regular motion in the phase space
of the billiard, there exist marginally stable orbits that
cause this “sticking.” A schematic model will let us —
semiquantitatively — understand why the decay is nev-
ertheless almost exponential.

The results of the numerical simulation are presented
in Sec. II. They are contrasted with the decay of the
corresponding quantum system in Sec. III. The simple
model illustrating the interplay between exponential and
algebraic decay of the classical system is described in
Sec. IV. Its predictions are compared with the present
results in Sec. V.

II. NUMERICAL EXPERIMENT

As in [1], a quarter of the Bunimovich stadium has
been considered in order to remove symmetry. Its shape
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is sketched in the inset of Fig. 1. All lengths are given in
units of the radius of the circular part of the boundary.
The shape parameter v (see Fig. 1) was v = 1.8. An
escape hole of size A has been assumed, as indicated in
Fig. 1, in the upper half of the small straight piece of
the boundary. For an ensemble of 10° particles, initial
conditions were chosen at random. The distribution was
a constant times dxdyd¢, where x and y are Cartesian
coordinates of the position inside the stadium and ¢ is an
angle characterising the direction of motion. The orbit of
every particle was followed numerically until it escaped
via the hole out of the stadium. The orbits were, however,
not followed beyond 10° collisions between the particle
and the boundary. For a hole of size A = 0.05 the result
of this numerical experiment is given in Fig. 1 by the
histogram of the probability density P(L) for the particle
to escape after an orbit of length L. This will be called
data in the sequel. Since the velocity of the particle has
constant modulus, we identify L with time.
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FIG. 1. Decay probability of the stadium with v = 1.8 and
an escape hole size of A = 0.05. The histogram is the result of
the numerical experiment. The full line is its parametrization
via Eq. (1). The parameters are given in Table I. The dashed
line is produced by the model of Sec. IV.
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One finds P(L) exponential for sufficiently small L.
Later P(L) turns into a more slowly decaying function.
This behavior is typical and it occurs wherever the hole
is positioned. The probability density P(L) can be rep-
resented by the combination of exponential and algebraic
functions

P(L) = Exexp (—=AL) + Aa(B —1)(1 +aL)™P, (1)

where £ + A = 1 for a normalized P. Then A measures
the weight of the algebraic term. The full curve in Fig. 1
is a fit to the data. The parameters «, 3, A, and A were
searched for. This procedure was followed in 15 “exper-
iments” with holes in the range of 0.25 > A > 0.0025.
The results are partly reproduced in Table I together
with the values of the normalized x2. Although only the
~ = 1.8 stadium is discussed and analyzed below, we also
display in Table I some results pertaining to the v =1
stadium in order to show that it behaves quite similarly.

Table I and Fig. 2 show that the weight A of the alge-
braic decay approaches zero for A — 0, i.e., the decay of
the stadium becomes exponential in the limit of a van-
ishing size of the hole. We call this behavior “almost
exponential” decay.

In the limit of A — 0 the decay constant approaches
— see Table I — the value

Xo = A 4A (2)
wA., w(m+4y)

given in [4]. Here, A, is the area of the billiard; the
momentum of the particle has been set equal to unity.
Equation (2) can be derived from ergodicity: Every point
in phase space should be visited with equal probability
independent of the elapsed time. From this one infers
[4] that the decay should be exponential with the decay
constant Ag.

We note that the dynamics of the stadium may also be
described as a mapping which generates, from given co-
ordinates of collision with the boundary, the coordinates
of the next collision. If one uses the number of mappings
applied to the initial distribution as time variable one
again infers exponential decay, since the motion on the

TABLE I. Results of parametrizing the numerical experi-
ments on the stadiums with v = 1.8 and v = 1. The quan-
tities listed are those of Eqs. (1) and (2) together with the
normalized x? values.

A A 103 8 103 103 )Xo x?
v=1.8
0.2500  0.301  34.00 2.36  34.93 30.77 0.99
0.0500  0.181 4.32 2.89 6.14 6.16 0.61
0.0100  0.038 4.71 1.97 1.22 1.23 0.50
0.0025 0 0.32 0.31 0.82
y=1
0.2500  0.223  48.66  2.42  49.93 44.54 1.38
0.0500  0.128 6.40 2.96 8.88 8.91 1.10
0.0100  0.030 2.09 2.81 1.79 1.78 1.03
0.0025 0 0.47 0.46 1.01
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FIG. 2. Weight A of the algebraic decay — see Eq. (1) —
vs the size A of the escape hole. The errors are statistical
ones. They are given if larger than the size of the dots.

boundary is ergodic, too. The decay constant vg is then
simply the ratio of the size of the hole and the perimeter
of the billiard,

2A
T+ 2y

vo = (3)
Here, we consider as boundary of the quarter stadium
only the piece that it shares with the original full sta-
dium. We disregard the “lines of cut.” Similarly a “colli-
sion with the boundary” is defined as a collision with the
piece of the original boundary (one could as well include
the full boundary of the quarter stadium into these def-
initions but the present choice is more convenient). The
ratio

vo w(m+ 47)
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FIG. 3. Decay probability P vs orbit length (or time)
L with hole size A as parameter. The full lines show the
parametrized numerical experiment. The dashed lines result
from the schematic model described in the main text.
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then is the mean free path of the particle between two
collisions with the boundary. We have verified numeri-
cally that this relation is fulfilled (again in the limit of
A — 0). Equation (4) is a special case of a formula in
Appendix B of [5].

The power 3 of the algebraic part of Eq. (1) is found
to lie between 2 and 3. The fitted decay functions for
v = 1.8 with the parameters of Table I which are use-
ful representations of the data, are given in Fig. 3 as
full lines. One notes that with A — 0 the onset of the
algebraic decay is shifted to larger L and to decreasing
probability level.

III. DECAY OF THE CORRESPONDING
QUANTUM SYSTEM

The almost exponential decay found above is in con-
trast to the behavior of the corresponding quantum sys-
tem studied with the help of microwaves in [1]. Suppose
that the holes through which the system is coupled to the
external world (the antennas) are small compared to the
wavelengths occurring inside. Every hole may then be
identified with one decay channel c. Let (I'c) be the de-
cay width into channel ¢ averaged over the eigenstates of
the stadium. We suppose that the decay widths into dif-
ferent channels are uncorrelated. To avoid complications
that are not instructive, we take (I'c) to be independent
of c. The probability P, that the quantum system decays
at time t after its formation is then

Py(t) ~ (1 +2(Ce)t) "2 %, (5)

for t larger than the equilibration time of the system; see
Sec. (6.3) of [6] or Eq. (6) of [1]. Here, M is the num-
ber of open channels (or holes). The algebraic form of
Eq. (5) occurs because P, is an average over exponen-
tially decaying resonances whose decay amplitudes have
a Gaussian distribution (see the introduction of [7]).

The quantum system decays almost exponentially if M
is large because Eq. (5) can then be approximated by

Py(t) ~ exp [—(4 + M)(Lc)t] (6)

and the weight of the algebraic tail becomes negligible.
For the channels to be statistically independent, any two
antennas must, however, be separated by a typical wave-
length or more.

We conclude that the quantum mechanical counterpart
of a system with a small hole decays algebraically. If the
statistics of the decay amplitudes is not exactly Gaussian
it will decay essentially algebraically. Slight deviations
from Gaussian distribution have been detected [8] and
are due to the presence of bouncing ball orbits between
the parallel straight sections of the stadium billiard.

Hence, the essentially algebraic decay of the quantum
system has no classical counterpart. The classical system
with a small hole decays almost exponentially.

What then is the origin of the algebraic tail in the clas-
sical decay functions P(L)? It is the fact that the motion
in the stadium is ergodic only if it persists indefinitely.
If the motion terminates by the escape of the particle,
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it becomes apparent that ergodicity is not established in
any finite time. The reason for this is the existence of
marginally stable orbits that can almost trap the parti-
cle — the bouncing ball orbits. For details, see the next
section.

It is then the same class of orbits, the marginally stable
orbits, that add corrections to the essentially different
behavior of the classical and the quantum systems.

IV. MODEL OF DELAYED CLASSICAL DECAY

The argument justifying exponential decay with the
decay constant Ao of Eq. (2) applies if ergodicity is estab-
lished “sufficiently quickly.” A close inspection [9] reveals
that the fluctuations of the frequency of the particles’ ar-
rival at location of the hole must be small: Let At be the
difference between two successive times of arrival at the
hole. Then (At)z/zﬁi2 must be small compared to unity.
Now, when there is a region of phase space inte which the
particles penetrate very slowly and, by the same token,
in which they remain trapped for an exceptionally long
time once they are there, then the above fluctuations are
large and the release of the trapped particles will eventu-
ally dominate the decay process. Such regions of phase
space have been described, e.g., in [10-15] and in the first
reference of [2]: Close to the family of bouncing ball or-
bits and the “whispering gallery orbits” there are parts
of phase space with volume > 0 in which the particles
can be trapped for an arbitrarily long time. (A whisper-
ing gallery orbit is the motion of the particle along the
boundary.)

The arguments of [10] show that the probability G(n)
for the particle to be in an “almost bouncing ball or-
bit” that will persist for more than n collisions with the
boundary is

Gln) = — L,

(% 27)n n> 1. (7)

An “almost bouncing ball orbit” allows for the angle be-
tween orbit and boundary to be slightly different from
/2. In this situation, n collisions amount to an orbit of
length L = 2n (see the definition of a “collision with the
boundary” in Sec. II). Therefore

G(n(L)) = —

L 1 8
Cl()L7 >> ’ ( )

is the probability for the particle to be in an orbit that
will persist over a length > L. Here, we have used

™+ 27
. 9
- (9)

g =

The probability to be in a whispering gallery orbit de-
creases more strongly than L~! and is therefore disre-
garded in the further discussion.

Hence, the probability that the particle is in an almost
bouncing ball orbit that will persist for the length L is
asymptotically
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1

Yas(L) = agl?’

d

A G(n(L) = (10)
It was therefore anticipated in [9,14] that P(L) should
asymptotically be ~ L™2. There is some numerical evi-
dence for this in [12]: Note that the function N(t) given
there by closed circles in Fig. 2 is the present G(n(L)).
The present data confirm this asymptotic behavior of
P(L) at least qualitatively.

The following schematic model, inspired by the treat-
ment of the Sinai billiard in [13], shows how the alge-
braically delayed decay comes about. Suppose that the
phase space can be split into two parts C and £ such
that the decay happens in C, the delay in £. Once the
particle is in C, it shall escape with probability w or im-
mediately go back to £ with probability 1 — w. Consider
a particle which may be anywhere at the time L = 0.
Define g(L)dL as the probability distribution for its next
transition from £ into C to happen at time L. Then the
probability density p; (L) to escape at time L after having
made exactly one transition from £ — C is

p1(L) = wg(L). (11)

Obviously g,s in Eq. (10) is the asymptotic form of g.
Let f(L)dL be the distribution of the time L between
two successive transitions £ — C. Then the probabil-
ity density p2(L) for escape after exactly two transitions
L —Cis

pa(L) =w(1 - w)g & f, (12)

where the operator ® denotes the convolution. For k&

transitions £ — C one has
pe(l) =w(1l-w) g@ (f®---®f), (13)

where g is folded with (k—2) convolutions of f with itself.
The decay probability P(L) is the sum

P(L) = pr(L). (14)
k=1

Taking the Laplace transform
pu(s) = [ dLexp(=sLipu(L) (15)
0

converts the convolution into a product of the Laplace
transforms § and f. Therefore the transform P(s) of P
is a geometric series in f, which gives

B(s) = wis)[1 — (1~ w)f(s)] ™. (16)

The function g is by definition proportional to an in-
tegral over f. We note that this is numerically exhibited
by [11], where the first-passage-time distribution func-
tion Pyp; in Ref. [11] corresponds to f and its asymp-
totic behavior is found to be close to ~ L~3. The relation
between g and f is also just the relation between “tran-
sient chaos” and “chaotic scattering” established in [12].
As the terms are used there, transient chaos corresponds
to placing at time zero the particle at random in phase
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space; chaotic scattering corresponds to the situation in

which the particle enters £ at time zero. The results of

[12] are compatible with f ~ dg/dL as it should be.
The normalization of f and g requires

dg
= = —g(0)f(L 17
95— o) (a7)
and the definition of the Laplace transform then leads to
; g9(s)
s)=1-—s . 18
flo) =1- %5 (18)

Inversion of the Laplace transform [Eq. (16)] then gives
P(L) in the form of the Fourier integral

oo

ds'P(is') exp (is'L)

oo ool
- (27r)*1/ as' — )
oo 1+ 2%4s'g(is)

wag

x exp (is'L). (19)

P(L) = (27r)A1/

—0o0

A similar formula was used in Eq. (5) of [15] to describe
the exponential part only of the decay and to define the
“relaxation time” within the closed stadium. It is shown
here that Eq. (19) accounts for the decay function alto-
gether if the appropriate probability density g(L) is intro-
duced. It must necessarily allow for large fluctuations of
L. There exists, of course, a g(L) such that the observed
decay function is exactly reproduced. The present model
is schematic by a naive choice of g(L), leaving open the
exact definition of the partition of phase space into C and
L. We only know the asymptotic form of G; see Eq. (8).
Let us, in the simplest possible way, assume that

g(L) = ao(1 + apL) 2. (20)

The decay function of Eq. (19) approaches an exponen-
tial behavior when w — 0. The factor (1 — w)/wayp in
the denominator of the integrand is then very large and
this makes the functional form of § irrelevant. One can
thus approximately put §(i<s') =~ §(0) = 1 and the pole of
P(is') at s' ~ iwayg yields P(L) ~ exp (—waoL).

The asymptotic behavior of P(L) is given by setting
the denominator of the integrand equal to unity. This is
so because the omitted terms are of the type (is')"g(:s’),
leading to derivatives of g(L) that decrease faster than
g(L). Hence, P(L) — g(L) for L — oo. This means
that the asymptotic behavior is independent of the size
of the escape hole. This result also implies P(L) ~ L~2
for large L, as expected. Hence, the present model in-
corporates the features of the data that we have termed
almost exponential decay.

By equating wao with the decay constant Ao, Eqs. (2)
and (9) determine the two parameters of the present
model. This yields the theoretical decay functions given
as dashed lines in Fig. 3 together with the data.

V. DISCUSSION

The numerical experiment yields an almost exponen-
tial decay of the classical Bunimovich stadium. This
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means that the decay function P(L) starts out exponen-
tially and later turns to an algebraic behavior. This con-
trasts the claim of [4] (see also the discussion in [16]).
The weight of the algebraic decay, however, tends to zero
with decreasing size of the escape hole. In this modified
sense of exponential decay we agree with [4].

Hillermeier et al. [3] show how the algebraic decay can
be understood formally. The authors of [17,18] have
pointed out that the slow transport of particles at the
boundary of islands of regular motion can cause alge-
braic decay. Yet there are no strictly stable orbits in the
Bunimovich stadium [2]; in this sense it is a system with
“fully developed chaos” [19]. However, there is the family
of marginally stable bouncing ball orbits that according
to [10] causes the algebraic damping of phase space cor-
relations. It is responsible for the algebraic tail of the
decay function P(L), too. More precisely, the bouncing
ball orbits are a set of parabolic [20], nonisolated periodic
orbits. A similar set of periodic orbits exists in the Sinai
billiard and causes similar effects [13].

The algebraic tail of P(L) and its suppression in the
limit of vanishing size A of the hole — briefly, the almost
exponential decay — is semiquantitatively reproduced by
the model inspired by [13] and described in Sec. IV. The
model reproduces the exponential part of P(L). It should
yield a lower limit to the algebraic part because there
may be sources of delayed decay other than the bounc-
ing ball orbits. The comparison between data and model
in Fig. 3 shows this to be true. Furthermore, the data
and the results of the model should converge for L — oo,
since the bouncing ball orbits cause the most pronounced
delay. Convergence is indeed indicated by the curves for
the largest holes although it is very slow; it takes many
inverse decay constants )\61 before it is reached. One
expects [10] that P(L) tends, for L — oo, towards a
function g5 ~ L~2, which is independent of the size of
the hole and given by the properties of the bouncing ball
orbits alone. The model of Sec. IV complies with this
expectation. Again it is also compatible with the data:
The experimental P(L) asymptotically behaves as L™?,
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with 3 somewhat larger than 2, and thus indicates con-
vergence towards g,,(L). For the largest hole (A = 0.25)
the convergence is essentially achieved within the range
of L that we have studied. It is, however, achieved so
slowly that for the other hole sizes A, even orbit lengths
of L = 10* are insufficient to demonstrate it. The data
are, however, fully consistent with convergence towards
gaS(L)~

There are numerous studies of algebraically delayed
decay of correlations (as, e.g., velocity correlations) in
closed chaotic systems, see, e.g., [2,10,21,22]. The au-
thors trace the delay back to the existence of marginally
stable periodic orbits. Anomalous diffusion is caused by
the same type of orbits; see, e.g., [23,24]. Again these or-
bits are responsible for the algebraically delayed escape of
particles from fully chaotic systems. This emerges from
the arguments of [14], the numerical experiments of [13],
and the present paper. Hence, all these phenomena are
related to each other. By using the considerations of [10]
to define g,5(L) we have directly linked the decay of cor-
relations to the escape. Furthermore, we have pointed
out that the algebraic decay of chaotic quantum systems
is a consequence of wave mechanics and is not produced
by the delayed decay of the classical counterpart.
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